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Outline
● Motivation
● Introduction to the physics models in NEST

○ Motivation, parametrization

● Global fit procedure for NR
○ Light yield, charge yield, ratio of the two

● Fit results
○ Parameters

○ Detector-independent quantities

● Comparison to other work
● Summary
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Dual-phase xenon emission detectors

● Measure low energy particle 
interactions by combining two 
signals:

○ Scintillation light (S1)

○ Ionization charge (S2)

● Discrimination between electronic 
recoils (ER) and nuclear recoils (NR)

● Applications in direct dark matter, 
coherent neutrino scattering 
searches (along with argon).  

● Need to understand the physics of 
nuclear and electronic recoils to 
understand low-energy response, 
discrimination

3

Image by C.H. Faham (LBL)

D. Akerib et al., Phys. Rev. Lett. 112 (2014) 091303. 
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Step 1:
Quanta are generated.  If it’s 
a nuclear recoil, Lindhard 
quenching is applied.

NEST algorithm

Step 2:
Quanta are split initially 
into ions and excitons. The 
exciton-to-ion ratio differs 
between ER and NR.

Step 3:
Electron/ion pairs recombine to 
produce photons. The Thomas Imel 
box model is implemented at this 
stage, as well as Penning quenching.
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ER
NR

Thomas-Imel recombination model
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NEST predicts absolute number of 
electrons AND number of photons.
● Conserves energy
● Assumes anti-correlation

Energy scale uses combined 
information to improve resolution

Thomas-Imel recombination model
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Global fit to the world’s data (NR)

To fit to all of these data, we construct a global likelihood function and optimize.
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Leff   - scintillation yield Qy  - ionization yield Electron / photon ratio

Chepel (1999)
Arneodo (2000)
Akimov (2002)
Aprile (2005)
Aprile (2009)
Manzur (2010)
Plante (2011)

100 V/cm   Case (2006)
270 V/cm   Columbia (2006)
530 V/cm   XENON100 (2013)
730 V/cm   Sorensen (2009)
730 V/cm   Sorensen (2010)
730 V/cm   XENON10 (2010)
1000 V/cm Manzur (2010)
2000 V/cm Columbia (2006)
2030 V/cm Case (2006)
3400 V/cm ZEPLINIII SSR
3900 V/cm ZEPLINIII FSR
4000 V/cm Manzur (2010)

Dahl (2009)
60 V/cm
522 V/cm
876 V/cm
1951 V/cm
4060 V/cm
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Parameterization and best fits
Nine free parameters - a, b, c, d, f, 
k, alpha, beta, “zero field”

Four quantities that are fit:

(biexcitonic quenching)
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Recombination

Initial ionization

Nuclear recoil 
efficiency

Biexcitonic 
quenching

Variable a b c d f k 0-field

Best fit 0.0554 -0.0620 1.240 -0.0472 -239 0.1394 3.12 1.141 1.03

68% CL - -0.0029 -0.0056 -0.079 -0.0088 -27.7 -0.0026 -0.38 -0.086 -1.03

68% CL + +0.0023 +0.0065 +0.07 +0.0073 +9.0 +0.0032 +5.50 +0.453 +14
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Leff and Qy - from best fit model
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Chepel (1999)
Arneodo (2000)
Akimov (2002)
Aprile (2005)
Aprile (2009)
Manzur (2010)
Plante (2011)

100 V/cm   Case (2006)
270 V/cm   Columbia (2006)
530 V/cm   XENON100 (2013)
730 V/cm   Sorensen (2009)
730 V/cm   Sorensen (2010)
730 V/cm   XENON10 (2010)
1000 V/cm Manzur (2010)
2000 V/cm Columbia (2006)
2030 V/cm Case (2006)
3400 V/cm ZEPLINIII SSR
3900 V/cm ZEPLINIII FSR
4000 V/cm Manzur (2010)
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Comparing alternative NR models

Lindhard quenching in liquid xenon is a 
source of uncertainty.

Directly affects number of quanta:

Alternatives exist in literature:
● F. Bezrukov et al., Astroparticle Physics 

35 (2011) p. 119. 
○ Alternative sn  models

● W. Mu, X. Xiong, X. Ji, Astroparticle 
Physics 61 (2015) p. 56

○ Alternative se  model

Lenz - Jensen
Ziegler et al.
Thomas-Fermi (this work)
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ER model

Baudis et al., Phys. Rev. D 87 (2013) 115015

Older version of NEST predicts scintillation yield at different energies and 
fields:

No applied electric field Quenching at 450 V/cm
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ER model (cont.)

NEST model v. 0.98

Data from XENON100 detector, 530 V/cm

Newest version of NEST will fit to all available data in a global manner, and will 
be improved in light of LUX tritium calibration data.

Akimov et al., arXiv:1408.1823Aprile, Dark Attack 2012
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Summary

● Model has been constructed
○ Incorporates multiple physics models

○ Predicts both light and charge yield given energy and applied field

● Globally fit to all available data
● Different physics models studied from global 

perspective, best fit found.
● Similar approach should be applicable to LAr, but has 

not yet been implemented

Publication of NR model forthcoming
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Backup slides
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Free parameters in NEST (NR)
Nine free parameters - a, b, c, d, f, 
k, alpha, beta, “zero field”

Four quantities that are allowed 
to vary

(biexcitonic quenching)
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Recombination

Initial ionization

Nuclear recoil 
efficiency

Biexcitonic 
quenching

We also introduce as a free parameter an “effective zero field”.  The 
scintillation efficiency is typically measured at zero field, but our model 
blows up.
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MCMC estimation of parameters

Best fits and errors can be found by 
histogramming the samples and reading off 
the maximum:

It’s also easy to get covariances by 
histogramming samples in 2D. Helpful for 
error analysis.
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We assume that the likelihood function we’ve constructed is proportional to the probability of our 
model given this set of data:

Then, sampling gives us the underlying PDF, without solving analytically.
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Ensuring a fair sample

We study the 
autocorrelation of each 
variable:

To ensure a fair sample, 
must be sure that 
Nsamples >> LengthR

● In our case, we use 
3,000,000 samples

h  (step number 0 - 5000)
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Field dependence of scintillation / ionization

Light yield relative to 0 V/cm Charge yield relative to 0 V/cm



Brian Lenardo IEEE - NSS 2014 November 10, 2014

Larger version of comparison to Mu et al.

This work


