

The Noble Element Simulation Technique v2

Jacob Cutter, University of California, Davis For the NEST Collaboration NorCal HEP-EX, December 2, 2017

Noble Element TPCs

Noble elements such as **xenon (Xe)** serve as high quality detection media for reconstructing particle interactions.

Dual-phase time projection chambers (TPCs) are a common example, where energy reconstruction is done using both scintillation and ionization channels.

It is important to model light and charge yields for a variety of interaction types.

NorCal HEP-EX, December 2, 2017

Light and Charge Production in Xenon

- The actual microphysics of scintillation and ionization pathways is complicated, and for Xe we cannot completely track the recoil cascades from first principles.
- NEST (Noble Element Simulation Technique) began as a semi-empirical model that traced these pathways.
- Precision data has constrained the model to purely empirical fits of yield data.

Motivations for NEST

- Having simulations of yields as a function of electric field is crucial for optimizing detector designs and operational parameters.
- NEST guides not only the process of detector planning, but also informs the data analysis during runs and provides crucial cross-checks.
- Having well-understood background and signal models is crucial for low background experiments and rare event searches.

LZTDR (Mount et al.)

NorCal HEP-EX, December 2, 2017

Enter NEST v2.0

- The NEST v2.0 is the latest standalone package, which can be used both as a library and as a command-line tool for quick calculations.
- NEST v2 compiles without dependencies on GEANT4 or ROOT, making it a faster and more accessible tool that works right out of the box.
- There are models for various interaction types (each with a succinct formula):
 - Compton scatters and beta decays
 - Photo-absorption
 - o ^{83m}Kr
 - Xe, other heavy nuclear recoils (e.g. ²⁰⁶Pb)
 - Neutrons

Nuclear recoils (NR)

Electron recoils (ER)

• Alphas

Validation Campaign

NorCal HEP-EX, December 2, 2017

6

Conclusions

- NEST v2 will be available as a public beta version by the end of this year.
- Future goals include the addition of recombination fluctuations to the physics models, an optional GEANT4 integration for full detector simulations, and a web tool for quick calculations.
- We plan to use the new empirical models as a point of comparison for an eventual first-principles atomic physics model, NEST v3.

NEST Collaboration

Mani Tripathi Aaron Manalaysay Jacob Cutter

State University of New York

Matthew Szydagis Jack Genovesi Madison Wyman Emily Magnus

Jon Balajthy Carter Hall

Ekaterina Kozlova

UC San Diego

Kaixuan Ni Junying Huang

Jason Brodsky Kareem Kazkaz Brian Lenardo

Dan McKinsey Vetri Velan

NorCal HEP-EX, December 2, 2017

Thank you!

Questions?

NorCal HEP-EX, December 2, 2017