Monte Carlo Code for Noble Scintillation and Ionization

Matthew Szydagis

EXO Group Meeting, Stanford University, 11/08/2013
References

• There are now 3 NEST publications:
 – J. Mock et al., arXiv:1310.1117 **(Modeling Pulse Characteristics in Xenon with NEST)...**

• There is a comprehensive website which includes plots, and an archive of every NEST seminar, conference talk, or poster ever: http://nest.physics.ucdavis.edu/site/
What is NEST?

• The name refers to both a model (or, more accurately, a collection of models) explaining the scintillation and ionization yields of noble elements as a function of particle type (ER, NR, alphas), electric field, and dE/dx or energy

• ... as well as to the C++ code for Geant4 that implements said model(s), overriding defaults

• Has goal of providing a full-fledged MC sim with
 – Mean yields (light AND charge)
 – Energy resolution (includes BG discrimination)
 – Pulse shapes (S1 AND S2)

• Combed the wealth of data on noble elements and combined all of the physics learned
Basic Physics Principles

- Exciton-ion ratio 0.06 (173 K) for ER (~1 for NR)
- S1 ≠ energy: energy depositions divide into two channels, S1 and S2, non-linearly
- Nuclear recoils also have to deal with Lindhard*
 * but it affects BOTH charge and light production
Anti-Correlation

- In LAr, anti-correlation between light and charge was not initially seen
- A re-analysis of old data shows this; DarkSide has seen it too (IDM ’12)

The yields change fast at low field

Formulation of the Approach

- Cornerstone: one effective work function W for production of *either* a scintillation photon or an ionization electron. All others derive from it.

- $W_{LXe} = 13.7 \pm 0.2$ eV

- Recombination different for short and long tracks
 - Thomas-Imel “box” model TIB ($< O(10)$ keV)
 - Doke’s modified Birks’ Law

- Probability r makes for non-linear yield per keV
Energy Reconstruction

- \(N_\gamma = N_{ex} + r N_i \) and \(N_{e^-} = (1 - r) N_i \)
- \(E = (N_{e^-} + N_\gamma) W = (a S1 + b S2) W \)
- ‘a’ and ‘b’ are simply the detection efficiencies for photons and electrons, respectively
- If floating, the values which optimize the resolution for a particular peak differ, and don’t match efficiencies
 - Because the scintillation and ionization yields change with energy. Their ratio shifts.
 - Because S1 and S2 are affected differently by detector effects. (S1 has worse stats.)
Recombination Probability (LXe)

- An undifferentiated number of quanta is created, then fluctuated by the Fano Factor (0.03), for every energy deposition step in GEANT4
- Excitons and ions are separated binomially, and ions may recombine
- Function of dE/dx (Doke, above example) or N_i (TIB) with “constants” that vary with field, with Doke and TIB opposite in trend vs. energy
Absolute Zero-Field Light Yield vs. Energy
Relative Yield vs. Energy and Field

As the energy increases, dE/dx decreases, thus recombination decreases (less light ultimately, at the expense of more charge)

- NEST can translate yield assumptions between fields and energies

Birks’ law at right and TIB (dE/dx-independent) for the left

Dip from K-edge (just like in NaI).

Baudis et al., arXiv:1303.6891

Zero field

Non-zero field (450 V/cm)
Relative Light Yield vs. Energy

- NEST not only postdicts: it’s got predictive power for new data!
- Co-57 ~122 keV, the reference point for NR L_{eff}
- XENON100 at 530 V/cm field

 Aprile, Dark Attack 2012; Melgarejo, IDM 2012

No Co-57 calibration, so NEST was a key part of their WIMP limit calculation, as it was for the recent LUX first result paper.
No such thing as a generic 'ER' curve.
Absolute Yields vs. Field and Energy
Energy Resolution: Light and Charge

- Standard Fano factor left alone, but the recombination fluctuations modeled as worse than binomial, with a standard deviation of $\sqrt{F_e N_e}$.
- An ansatz solution (seeking justification) that is energy-independent (almost), but electric field-dependent -- not fixed at 20 as in Conti et al.
- Effect applied per interaction site, and disappears as the field goes to infinity, but starts high ($F_e > 400 \text{ @ZF}$) and disappears at low energies.
Energy Resolution: Light

Source: the LUX engineering run paper

LUX Surface Data
Gaussian Fits
LUXSim + NEST

Backscatter peak ~200 keV

Peak:
30 keV x-ray

May be the first time that Monte Carlo peak width is not informed by the data!

164 keV

236 keV (=39.6 + 196.6 keV)

662 keV (137Cs)

Fit at same time with same model

M. Woods
• Prediction for a field never before studied (376 V/cm) and a new energy (2.6 MeV gammas, whereas vetted at 570 keV)
Pulse Shape (S1)

- The differences between ER and NR disappear with higher fields
- Also disappear at lower energies (bad for PSD)
- Two exponential time constants corresponding to the triplet and singlet Xe dimer states, but the triplet time dominates
- Ratio of populated states a function of particle type
- Recombination goes as $1 / \text{time}$, but time constant not fixed (related to the LET and electric field)
Pulse Shape (S2)

- New particle type for drift electrons
- *Can* do 3-D field mapping
- Long list of effects included
 - Drift speed (liquid, gas)
 - Different triplet (~100 ns!) and singlet decay times in the gas phase
 - Diffusion constants (transverse and especially longitudinal)
 - Electron trapping time at gas / liquid interface prior to extraction
- Can now reproduce S2 width versus depth without any empirical-only factor
Conclusions

• Model and software NEST has a firm grasp of microphysics.
• Though NEST doesn’t track individual atoms or excimers, it’s not far from a fully first principles approach, as it considers the excitation, ionization, recombination process, resorting to interpolative splines as indirect fits or not at all
• Extensive empirical verification with past data undertaken using multiple results instead of only one experiment
• NEST is intricate, and it is not trivial to convey all of the subtleties, but the noble life is an intricate one. Lots of things historically thought of as constant found to depend on field, energy, density, etc. such as scintillation yield
• Currently, all parameters are physically well-motivated except for the (large) size of the recombination fluctuations in LXe
Recombination Fluctuation

- The anomalously high recombination fluctuations at high energies, where \(F_e \) is \(O(10-100) \), are smoothly extrapolated down to 0 additional fluctuation (i.e., binomial only) at 0 energy (using 876 V/cm Dahl data to ground the NEST model)
Scintillation only resolution demonstrated
Dominated by anticorrelation effects

But photon resolution and APD noise, missing from simulation, not negligible