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Introduction A"

o Project title: NEST, the Noble Element Simulation Technique

+Noble-element particle detectors could potentially be very useful in reactor
monitoring and port monitoring.

oNEST is a simulation package for modeling and understanding the scintillation
and ionization response of noble element particle detectors considering a wide
range of properties, including energy deposition, applied field, particle type.

oNEST code is free and publicly available: http://nest.physics.ucdavis.edu

olt is a supplement to the standard GEANT4 particle-transport Monte Carlo
simulation package, developed heavily at CERN. As such GEANT4+NEST
facilitates construction of an entire virtual experiment to aid in forming expected
signals and behaviors.
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& Coherent neutrino-nucleus scattering could provide a robust, relatively
high-rate method for passive reactor monitoring.
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: Neutrino—nucleus rate in a LUX-type
¢ LUX |iquid_xenon detector [ detector, 50 feet from a 2 GW reactor

used as an example (250 10"}

kg) [D.S. Akerib et al., Phys.
Rev. Lett. 112, 091303 (2014)]

¢ An energy threshold of
fractions of a keV could
yield upwards of
thousands of neutrino
events per day from a

Integrated Rate [evts/day]

10 ]
reactor.
¢ This work in collaboration .
with LLNL 10 E
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7 Reactor anti-neutrino spectrum taken from F.T. Avignone, Phys. Rev. D2, 2609 (1970)
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Technical Challenges and Progress  if WA'«o»4

o NEST is already consistent with a wealth of experimental results using
liquid xenon, for both electronic recoils and nuclear recoils.

+ Until recently, particle interactions in gaseous xenon were not modeled by
NEST. Progress has been made here, particularly relating to the effect of
electrons drifting through gas in a dual-phase detector. (J. Mock et al.,
2014 JINST 9 T04002).

¢ Gaseous and liquid argon are also commonly used media for particle
detection, and work is ongoing on this front.

+ Atechnical challenge related to NEST is obtaining low-energy nuclear
recoil response data (e.g. in liquid xenon), which goes into constraining
the physical model implemented in NEST. Recently, the LUX
collaboration has released a preliminary result on nuclear recoils in liquid
xenon in the sub-keV regime.
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Basic Physics Model UA' 1
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o Because of these complicated effects, electronic
and nuclear recoils result in different proportions
of ionization and scintillation for the same energy
, 2Xe scintillation | Allows one to identify primary particle identity
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+ Scintillation yields over a wide range of energies are accurately predicted
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Comparison to data TNVA

+ Statistical fluctuations, which determine the energy resolution, are naturally
produced by the simulation, with no tuning.

+ First instance in noble element detectors of a simulation naturally and

correctly predicting the detector resolution.
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& Recently published, the inclusion of the time structure of both scintillation
and ionization signals in liquid xenon has been included in NEST (error
bars include both statistical and systematic uncertainties).
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Recent confirmation UA'1

& Recent experimental work by another group studying electronic recoils in
liquid xenon showed results consistent with the behavior predicted by

NEST.
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LUX enters sub-keV regime VA s
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Qy [electrons/keV]

— Preliminary data from LUX
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¢ The ionization channel is

generally much more
sensitive than the
scintillation channel.

Recall that an energy
threshold of fractions of a
keV could serve as a high-
rate anti-neutrino monitor of
reactors.

Preliminary data recently
released from the LUX
collaboration produced the
first probe of nuclear recoils
in the sub-keV range. NEST
is currently in the process of
being updated with these
new data as constraints.

7 Preliminary LUX Qy results from: http://www.pa.ucla.edu/sites/default/files/webform/20140228 jverbus ucla2014.pdf
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Conclusions A 4

¢ NEST predicts and reproduces the response of a generic
noble liquid detector to ionizing radiation.

o The code is publicly available for download and is to be
used as a supplement to the (also publicly available)
GEANT4 simulation framework.

¢ Ongoing work on low-energy nuclear recoils in liquid
xenon.

¢ NEST is cross-disciplinary, applicable to many fields of
physics research, including dark matter direct detection,
neutrino physics, passive reactor monitoring, and medical
physics.
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