# A New Expansion and Realism Addition to the Scintillation Physics in GEANT4

UC Davis and LLNL

<u>Faculty</u> Mani Tripathi Bob Svoboda



<u>Postdocs and</u> <u>Research Scientists</u> Matthew Szydagis Kareem Kazkaz

<u>Undergraduates</u> Nichole Barry Alex Shei Dustin Stolp <u>Graduate Students</u> Jeremy Mock Melinda Sweany Sergey Uvarov Nick Walsh Mike Woods



#### Purpose

- Create a full-fledged simulation based on a heuristic, semi-empirical approach
- Comb the wealth of data for liquid and gaseous noble elements for different particles, energies, electric fields & combine all
- Aid the many dark matter (and 0vBB decay) collaborations which utilize this technology to be on the same page w.r.t. to simulation
- Bring realism to the constant-yield model in GEANT4 at present for nobles
- Explore backgrounds at low energy by expanding GEANT4 physics to be more accurate in the energy regime O(1 keV)

# **Basic Physics Principles**



- Heat loss for nuclear recoils (Lindhard effect); electron recoils easier to deal with (or are they ...?)
- Starting simple: no exotic energy loss mechanisms (like "bi-excitonic" collisions). Explains data?

#### Model Framework: Electron Recoils

- Looking at the GEANT tracking verbosity: different energy depositions from the secondary electrons and gammas in an EM-cascade
- Let's allow the recombination to fluctuate stochastically by treating every electron recoil on its own



3 of 13

# The Recombination Probability



- Important for predicting the light yield correctly (at least for Xe, Ar): most primary scintillation comes from recombined electrons (not direct)
- Many theoretical models tried; we picked one theoretically motivated that fits majority of xenon data + fits best
- Curve adapted continuously for electric fields: more field -> more low-energy ionization e's (from the higher-energy recoils) escape (and drift)

AARM 2/25/11

4 of 13

M. Szydagis

#### **Anomalous Low-Energy Behavior**

- Seen also in NaI[TI] crystal
- Important region we must understand: what happens to electron/nuclear recoil discrimination here? What backgrounds are relevant?
- Unnatural for noble, and cannot be explained by a simple turn-over in the recombination probability
  - How to explain why a 5 keV  $\gamma$  scintillates less than 10?
  - Makes electron recoils look more like nuclear recoils
- Not understood for years in xenon; is it an *L*<sub>eff</sub> clue...?



5 of 13

M. Szydagis

AARM 2/25/11



LONG TRACK (HIGH-ENERGY) -Many ionizations -Freed electrons have many opportunities to recombine with ions all along the track SHORT TRACK (LOW-ENERGY) -Fewer ionizations -Freed electrons are now attracted by fewer ions, so can escape more easily

- Low-energy particles have short ranges
- Liberated electrons see fewer opportunities to get recaptured by the ionized atoms, so more get away without recombining and going on to make scintillation
- GEANT4 does not simulate the lowestenergy ionization electrons, but we can approximate
  - Define minimum track length
  - Force dE/dx to decrease

AARM 2/25/11

6 of 13

M. Szydagis

# Putting it All Together to Predict Yield



7 of 13

The Electric Field Dependence of Scintillation and Charge Yields



#### **Reproducing Spread in Yield**





## LXe Properties: The Finer Points

- We compiled all available (Xe) experimental data in the literature and performed a metaanalysis of it
- Scintillation wavelength is 174 nm (7.1 eV) with 11.5 nm FWHM, averaged over all results
- Compiled lifetimes, ratios for singlet, triplet states (unique for different interactions!)
- Studied the physics of electron drift so we can now simulate 2-phase detectors w/field well

| Particle                                                                                                           | $	au_1$               |                                                                               |  | $	au_3$                               |           | $A_{1}/A_{3}$     |                       |  |
|--------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------|--|---------------------------------------|-----------|-------------------|-----------------------|--|
| е                                                                                                                  | $2.2 \pm 0.3$         |                                                                               |  | 27 :                                  | ±1        | $0.6 \pm 0.2$     |                       |  |
| $\alpha$                                                                                                           | $3.77\pm0.31^{\star}$ |                                                                               |  | 23.7 =                                | ± 2.4*    | 11.6 =            | £ 9.71*               |  |
| $n+^{252}Cf$                                                                                                       | $5.1\pm0.45$          |                                                                               |  | 23.2                                  | $\pm 1.5$ | $7.8 \pm 1.5$     |                       |  |
| Liquid xenor<br>thermal<br>electron<br>drift velocity<br>versus<br>electric field<br>(data in red,<br>fit in blue) | drift speed (m/s)     | $3 10^{5}$<br>2.5 $10^{5}$<br>2.5 $10^{5}$<br>1.5 $10^{5}$<br>5 $10^{4}$<br>0 |  | · · · · · · · · · · · · · · · · · · · | E ()//cm  |                   | <b>10<sup>4</sup></b> |  |
| M. Szydagis                                                                                                        |                       |                                                                               |  |                                       |           | <sup>リ</sup> AARM | 2/25/11               |  |

11 of 13

#### Status and Future

- Preparing upgrade for G4Scintillation.cc , speaking with GEANT about inclusion in next version
- Fully simulating a DAQ chain (pulse shaping, etc.)
- Adding Fano factor, checking energy resolution
- LUXSim will eventually become the first application of the work presented here to a real detector
- No more heuristics, no more rules of thumb and extrapolations from past detectors
- Dial in a particle type and energy, set your electric fields, and watch it go and give reliable results
- Repeat: argon, neon complete picture AARM 2/25/11