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Purpose

• Create a full-fledged simulation based on a 
heuristic, quasi-empirical approach

• Comb the wealth of data for liquid and gaseous 
noble elements for different particles, energies, 
and electric fields, then combine everything

• Aid the many dark matter and 0nbb decay 
experiments which utilize this technology to be 
on the same page for simulations

• Bring added realism to the simplistic model in 
GEANT4 present now (v4.9.4) for nobles

• Explore backgrounds at low energy by expanding 
GEANT4 physics to be more accurate when you 
go to a low energy regime: O(1) keV
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Basic Physics Principles

• Heat loss for nuclear recoils (Lindhard effect); 
electron recoils easier to deal with (or are they …?)

• Starting simple: no exotic energy loss mechanisms 
(like “bi-excitonic” collisions). Explains data?

Scintillation (S1) Ionization

Recombination (S1) Escape (S2)

division of deposition 
energy  a function of 
interaction type 
(nuclear vs. e-recoil) 
but not particle type 
(e.g., e ,g same), and 
not a function of the 
parent particle’s   
kinetic energy

division a function of linear energy transfer (LET) or 
stopping power (dE/dx) because of ionization density 
considerations, and of electric field magnitude

(nitty-gritty of 
molecular 
excitations 
glossed over)

HEAT (no 
signal)

(the infamous 

L value)
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Model Framework: Electron Recoils
• Looking at the 

GEANT tracking 
verbosity: 
different energy 
depositions from 
the secondary 
electrons and 
gammas in an 
EM-cascade

• Let’s allow the 
recombination 
to fluctuate 
stochastically by 
treating every 
electron recoil 
on its own

Xe

Shower of 
secondary 
electrons 
and 
gammas, 
tertiary, 
etc.

parent g Compton 
or other 
scattering, 
electron 
ionization 
and Brem.

photoabsorption
event followed by 
Auger emission

(e- ’s)

lots & lots of e-
recoils lower and 
lower in energy
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The Recombination Probability
• Important for predicting 

the light yield correctly 
(at least for Xe, Ar): most 
primary scintillation 
comes from recombined 
electrons (not direct)

• Many theoretical models 
tried; we combine 
theoretically motivated 
ones that fit majority of 
xenon data and fit best

• Curve adapted/splined
continuously for electric 
fields: more field  implies 
more low-energy 
ionization e’s (from the 
higher-energy recoils) 
escape (and drift)
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Not clear a priori what curve to use. Birk’s Law? Jaffe?



Anomalous Low-Energy Behavior
• Seen also in NaI[Tl] crystal
• Important region we must 

understand: what happens 
to electron/nuclear recoil 
discrimination here? What 
backgrounds are relevant?

• Unnatural for noble, and 
cannot be explained by a 
simple turn-over in the 
recombination probability
– How to explain why a 5 keV 

g scintillates less than 10?
– Makes electron recoils look 

more like nuclear recoils

• Not understood until  
recently - is an Leff clue…?

What is happening here?

Obodovsky 1994
Murray 1961
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A Solution at Last?
• Lower energy particles have shorter ranges (generally)

• In terms of physics we define “short range” as being 
less than the electron-ion thermalization distance of 
~4.6 mm (Mozumder, 1995)

• More electrons get away without recombining and 
going on to make scintillation (original concept from 
Ph.D. Thesis of C.E. Dahl, 2009)

• A marriage of two models: Thomas-Imel box model to 
explain short-range particles, and Jaffe (modified 
Birk’s) for long-range: box vs. column geometries

• Same physics, but different limits. In Thomas-Imel limit 
recombination is independent of dE/dx
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Putting it All Together to Predict Yield

(outliers typically 
have explanations)

rich features 
understood

not all authors 
use error bars

Here is 
Obodovsky
data from 
the earlier 
slide (red)
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The Electric Field Dependence of 
Scintillation and Charge Yields
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fake data (GEANT4 toy 
xenon model simulation)  
at the lower left.
Spread dominated by 
stochastic individual 
dE/dx fluctuations

Reproducing Spread in Yield
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Switching Gears: Nuclear Recoil
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Understanding 
the Raw Pulse 
Shapes (S1, S2)

Sorensen, 2008
Sorensen, 2011

Can we 
reproduce the 
rich timing 
structure of a 
scintillation 
signal from first 
principles in a 
sim?  Yes.

actual data, from 
XENON10
(Sorensen, 2008)

Shape is 
dominated 
by liquid 
electron 
diffusion, 
and the 
~100 ns 
lifetime of 
gas Xe
excimers

12

Need new 
particles, 
processes 
in GEANT 
to see this 
happen



LXe Properties: The Finer Points
• We compiled all 

available (Xe) 
experimental data in 
the literature and 
performed a meta-
analysis of it

• Scintillation 
wavelength is 174 nm 
(7.1 eV) with 11.5 nm 
FWHM, averaged 
over all results

• Compiled lifetimes, 
ratios for singlet, 
triplet states (unique 
for different 
interactions!)

• Studied the physics   
of electron drift so we 
can  now simulate    
2-phase detectors 
w/field well 0
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Status and Future
• Preparing upgrade for G4Scintillation.cc , speaking 

with GEANT about inclusion in next version

• Fully simulating DAQ chain (pulse shaping, etc.)

• Studying recombination fluctuations, Fano factor

• LUX will soon enjoy the first application of the work 
presented here for predicting new data

• No more rules of thumb, nor extrapolations from 
past detectors: build your geometry and go

• Dial in a particle type and energy, set your electric 
field, and watch your sim give reliable results

• Repeat: argon, neon – complete picture M. Szydagis


