THE NOBLE ELEMENT SIMULATION TECHNIQUE (NEST)

A Model of Scintillation and Electroluminescence in Noble Elements

Michael Woods

Collaborators

- Matthew Szydagis
- Mani Tripathi
- Michael Woods
- Nick Walsh
- Jeremy Mock
- Sergey Uvarov
- Kareem Kazkaz

Breakdown of N.E.S.T.

Noble Element

- Thinking of He, Ne, Ar, Kr, Xe, Rn
- Non-reactive.
- Filled electron shells.

GEANT4

- Standard simulation toolkit.
- NEST adds accuracy to scintillation physics.

Scintillation

- Response of a material to the passage of particles to create light.
- Incoming particle causes molecular excitation.

Why simulate scintillation noble elements well?

- Direct dark matter detection experiments
 - Calibration for LUX, XENON, ZEPLIN, LZ, WArP, DarkSide, ArDM, XMASS, DARWIN, MAX, Xürich, Xed, XeCube, PANDA-X, PIXeY, DEAP, CLEAN, ... 1- and 2-phase
- Double beta decay (0vßß, 2vßß)
 - NEXT, EXO
- Positron Emission Tomography (PET) scans for medical applications: detect 511 keV γ's
 - Other particle detection applications, e.g. collider experiments (MEG, Olive, et al.)

Purpose of NEST

- Create full-fledged simulation based on a physical, albeit heuristic/quasi-empirical approach.
- Unify simulation response across the many dark matter, double beta decay, and other experiments.
 - For both electron recoil (BG) and nuclear recoil (BG and signal)
- Started with LXe (for sake of LUX)

Scintillation Path

Scintillation Path

Observables are

- Scintillation [prompt and delayed] (S1)
- Escaped Ionization (S2)

Excellent Yield Agreement

- Photon yield
- Relative to the 32 keV ^{83m}Kr line
 - 150 PE

Nuclear Recoil

Quanta Manipulation

• Cornerstone: the work function for either quantum (γ) or electron) is the same.

$$N_q = (N_{e^-} + N_\gamma) = rac{E_{dep}}{W}$$

- But how much N_{γ} vs $N_{e^{-}}$?
 - This partitioning is key.
- The recombination of ions to form the total number of photons and escaped electrons is what NEST gets right.

$$N_{\gamma} = N_{ex} + rN_i$$
$$N_{e^-} = (1 - r)N_i$$

Modeling Recombination

$$N_{\gamma} = N_{ex} + rN_i$$
$$N_{e^-} = (1 - r)N_i$$

Micron scale

Long tracks

- Doke-Birks model.
- Model recombination with bulk ions along a track.

$$r = \frac{A\frac{dE}{dx}}{1 + B\frac{dE}{dx}} + C$$

$$C = 1 - A/B$$

Short Tracks

- Thomas-Imel box model
- Model recombination with electron/hole mobilities, dielectric constant, temperature.

$$r = 1 - \frac{\ln(1+\xi)}{\xi}$$

$$\xi = \frac{N_i \alpha'}{4\alpha^2 \nu}$$

Argon

* Regenfus, arXiv:1203.0849v1 [astro-ph.IM] 5 Mar 2012

Agreement with applied electric fields

* Manalaysay, arXiv:1303.6891 [astro-ph.IM]

- Back to Xe
- 450 V/cm field
- Quenching factor
 - The proportionality of scintillation yield at field to zero field.

Predictive power

Runtime Performance Impact

- Core physics and quanta calculation before propagation.
- All the accuracy, negligible performance degradation.
 - Some fraction of events faster than default Geant4 physics.
- Sub-dominant to photon propagation.

Summary

- Noble element simulation with GEAN4.
- Very fast computationally.
- A breakthrough in accuracy thanks to microphysics modeling.
- ER, NR, field dependence, and more.

Paper

- For all of the references used in this talk, please consult the full bibliography of
 - M. Szydagis et al., NEST: A Comprehensive Model For Scintillation Yield in Liquid Xenon 2011 JINST 6 P10002. arxiv:1106.1613
 - http://nest.physics.ucdavis.edu